Lecture 9
Friday, May 13, 2022

* Prayer
* Spiritual thought

Chain rule:
Call I: $\quad\left\{(x+1)^{4}\right\}^{\prime}=4(x+1)^{\prime}(x+1)^{3}=4(x+1)^{3}$

$$
\begin{aligned}
& f=f(x, y), \quad x=x(4,0), \quad y=y(4, v) \\
& f_{u}=?, f_{0}=?
\end{aligned}
$$

En $\quad z=x^{4}-y^{4}$

$$
\begin{aligned}
& x=u v_{1} y=u+v \\
& z=(u v)^{4}-(u+v)^{4} \\
& d z=z_{x} d x+z_{y} d y \longrightarrow \underbrace{\left(z_{x} x_{n}+z_{y} y_{u}\right)}_{z_{u}} d u+\underbrace{\left(z_{x} x_{v}+z_{y} y_{v}\right)}_{z_{v}} d v \\
& d x=x_{u} d u+x_{v} d v \\
& y=y_{u} d x+y_{v} d v
\end{aligned}
$$

Mattronciable chain rale:

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
$$

En
$f(x, y)$ suhigres $f_{x x}+f_{y y}=0$

$$
g(u, v)=f(u-2 v, 2 u+v)
$$

$$
\left\{\begin{array}{l}
x=u-2 v \\
y=2 u+v
\end{array}\right.
$$

Shoo that $g_{u n}+g_{u 2}=0$.

Ex: $\quad x^{2}+y \sin z+z x=1$
Find z_{x} and z_{y} at $(1,1,0)$.
We view z as a function of x and y.
Differentiate both sides of $(*)$ wort x This is called implicit differentiation

$$
\begin{aligned}
& 2 x+0+z_{x} x+z=0 \\
& \leadsto z_{x}=\frac{-2 x-z}{x} \\
& \text { At }(x, y, z)=(1,1,0), \quad z_{x}=\frac{-2-0}{1}=-2
\end{aligned}
$$

Differentiator both sides of (x) wot t y :

$$
\begin{aligned}
& \sin z+y z_{y} \sin z+z_{y} x=0 \\
\sim & z_{y}=\frac{-\sin z}{y \sin z+x}
\end{aligned}
$$

At $(x, y, z)=(1,1,0), \quad z_{y}=\frac{-0}{0+1}=0$.
E_{x}

$$
\begin{equation*}
x y^{2}+\sin y=0 \tag{*}
\end{equation*}
$$

Find y_{x} at $(x, y)=(0, \pi)$.
Diff. (x) wit $x: \quad y^{2}+2 x y_{x}+y_{x} \cos y=0$

$$
\leadsto y_{x}=-\frac{y^{2}}{2 x+\cos y}
$$

At $(x, y)=(0, \pi), \quad y_{x}=-\frac{\pi^{2}}{\cos \pi}=\pi^{2}$.

Directional derivative

$a=\left(a_{1}, a_{2}\right)$ is a
unit vector
En:

$$
f(x, y)=x^{2}+x y+y^{2}
$$

Find directional derivative at $P(1,2)$ in the diratirio of $\overrightarrow{\mathbb{P}}$ with $Q(0,1)$.

$$
\begin{aligned}
& \overrightarrow{P Q}=(-1,-1) \rightarrow a=\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \\
& \nabla f=(2 x+y, 2 y+x)
\end{aligned}
$$

$$
\begin{aligned}
& \nabla f(1,2)=(4,5) \\
& D_{a} f(1,2)=\nabla f(1,2) \cdot a=(4,5) \cdot\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=-\frac{9}{\sqrt{2}} .
\end{aligned}
$$

Consequence: gradient is the direction where f increases the most

$$
\begin{aligned}
& D_{a} f\left(x_{0}, y_{0}\right) \rightarrow \text { max } \\
& \nabla f\left(x_{0}, y_{0}\right) \cdot a \rightarrow \text { max : happens where } a=\frac{\nabla f}{|\nabla f|}
\end{aligned}
$$

level set is where f doesn't change its value.
Observation:
gradient is always perpendicular to level set.
Use Mathematira to draw level sets and gradient field.
Application:
Flliperid $x^{2}+2 y^{2}+2 z^{2}=2$.
Find tangent plane at $\left(1,-\frac{1}{2}, \frac{1}{2}\right)$.

$$
g(x, y, z)=x^{2}+2 y^{2}+2 z^{2}
$$

The ellipsoid is a 2-herel set of g. This level set is perpendicular to the gradient of g at $\left(1,-\frac{1}{2}, \frac{1}{2}\right)$.

$$
\nabla g=(2 x, 4 y, 4 z)
$$

$\operatorname{vg}\left(1,-\frac{1}{2}, \frac{1}{2}\right)=(2,-2,2) \leftarrow$ This is a normal rector t the. tangent plane.
The tangent plane has an equation

$$
\begin{aligned}
& 2(x-1)-2\left(y+\frac{1}{2}\right)+2\left(z-\frac{1}{2}\right)=0 \\
\leadsto & 2 x-2 y+2 z-4=0 \\
\Rightarrow & x-y+z-1=0 .
\end{aligned}
$$

